Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38660804

RESUMO

BACKGROUND: Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A2. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice. However, Pf4-ΔCre displays ectopic expression outside the megakaryocyte/platelet lineage, especially during inflammation. The use of the Gp1ba (glycoprotein 1bα) Cre promises a more specific, targeted approach. METHODS: To evaluate the role of Cox-1 in platelets, we crossed Pf4-ΔCre or Gp1ba-ΔCre mice with Cox-1flox/flox mice to generate platelet Cox-1-/- mice on normolipidemic and hyperlipidemic (Ldlr-/-) backgrounds. RESULTS: Ex vivo platelet aggregation induced by arachidonic acid or adenosine diphosphate in platelet-rich plasma was inhibited to a similar extent in Pf4-ΔCre Cox-1-/-/Ldlr-/- and Gp1ba-ΔCre Cox-1-/-/Ldlr-/- mice. In a mouse model of tail injury, Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated deletions of Cox-1 were similarly efficient in suppressing platelet prostanoid biosynthesis. Experimental thrombogenesis and attendant blood loss were similar in both models. However, the impact on atherogenesis was divergent, being accelerated in the Pf4-ΔCre mice while restrained in the Gp1ba-ΔCres. In the former, accelerated atherogenesis was associated with greater suppression of PGI2 biosynthesis, a reduction in the lipopolysaccharide-evoked capacity to produce PGE2 and PGD2, activation of the inflammasome, elevated plasma levels of IL-1ß, reduced plasma levels of HDL-C, and a reduction in the capacity for reverse cholesterol transport. By contrast, in the latter, plasma HDL-C and α-tocopherol were elevated, and MIP-1α (macrophage inflammatory protein-1α) and MCP-1 (monocyte chemoattractant protein 1) were reduced. CONCLUSIONS: Both approaches to Cox-1 deletion similarly restrain thrombogenesis, but a differential impact on Cox-1-dependent prostanoid formation by the vasculature may contribute to an inflammatory phenotype and accelerated atherogenesis in Pf4-ΔCre mice.

3.
Sci Signal ; 17(824): eadg9256, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377179

RESUMO

High-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent. Molecular dynamics simulations showed that the S1P-bound ApoM moiety in A1M efficiently activated EC surface receptors. Treatment of human umbilical vein ECs with A1M-S1P stimulated barrier function either alone or cooperatively with other barrier-enhancing molecules, including the stable prostacyclin analog iloprost, and suppressed cytokine-induced inflammation. A1M-S1P injection into mice during sterile inflammation suppressed neutrophil influx and inflammatory mediator secretion. Moreover, systemic A1M administration led to a sustained increase in circulating HDL-bound S1P and suppressed inflammation in a murine model of LPS-induced endotoxemia. We propose that A1M administration may enhance vascular endothelial barrier function, suppress cytokine storm, and promote resilience of the vascular endothelium.


Assuntos
Apolipoproteínas , Lipocalinas , Humanos , Camundongos , Animais , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Lipocalinas/metabolismo , Lipocalinas/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Apolipoproteínas M , Inflamação , Lipoproteínas HDL/farmacologia , Lipoproteínas HDL/metabolismo , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Esfingosina
4.
Arterioscler Thromb Vasc Biol ; 44(3): 558-583, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38269585

RESUMO

Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.


Assuntos
Insuficiência Cardíaca , Hipertensão , Humanos , Prostaglandinas , Remodelação Vascular , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Anti-Inflamatórios não Esteroides/efeitos adversos , Ciclo-Oxigenase 2 , Insuficiência Cardíaca/induzido quimicamente , Hipertensão/induzido quimicamente
5.
J Hum Hypertens ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212425

RESUMO

Chronic kidney disease (CKD) represents a significant global burden. Hypertension is a modifiable risk factor for rapid progression of CKD. We extend the risk stratification by introducing the non-parametric determination of rhythmic components in 24-h profiles of ambulatory blood pressure monitoring (ABPM) in the Chronic Renal Insufficiency Cohort (CRIC) and the African American Study for Kidney Disease and Hypertension (AASK) cohort using Cox proportional hazards models. We find that rhythmic profiling of BP through JTK_CYCLE analysis identifies subgroups of CRIC participants that were more likely to die due to cardiovascular causes. While our fully adjusted model shows a trend towards a significant association between absent cyclic components and cardiovascular death in the full CRIC cohort (HR: 1.71,95% CI: 0.99-2.97, p = 0.056), CRIC participants with a history of cardiovascular disease (CVD) and absent cyclic components in their BP profile had at any time a 3.4-times higher risk of cardiovascular death than CVD patients with cyclic components present in their BP profile (HR: 3.37, 95% CI: 1.45-7.87, p = 0.005). This increased risk was not explained by the dipping or non-dipping pattern in ABPM. Due to the large differences in patient characteristics, the results do not replicate in the AASK cohort. This study suggests rhythmic blood pressure components as a potential novel biomarker to unmask excess risk among CKD patients with prior cardiovascular disease.

7.
Clin Transl Med ; 13(11): e1440, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37948331

RESUMO

BACKGROUND: Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS: Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS: Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS: A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.


Assuntos
COVID-19 , Fosfolipases A2 Secretórias , Sepse , Humanos , SARS-CoV-2 , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Lipidômica , Leucócitos Mononucleares , Leucotrieno E4 , Prostaglandina D2 , Ciclo-Oxigenase 2 , Eicosanoides
9.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934604

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic parenchymal lung disease characterized by repetitive alveolar cell injury, myofibroblast proliferation, and excessive extracellular matrix deposition for which unmet need persists for effective therapeutics. The bioactive eicosanoid, prostaglandin F2α, and its cognate receptor FPr (Ptgfr) are implicated as a TGF-ß1-independent signaling hub for IPF. To assess this, we leveraged our published murine PF model (IER-SftpcI73T) expressing a disease-associated missense mutation in the surfactant protein C (Sftpc) gene. Tamoxifen-treated IER-SftpcI73T mice developed an early multiphasic alveolitis and transition to spontaneous fibrotic remodeling by 28 days. IER-SftpcI73T mice crossed to a Ptgfr-null (FPr-/-) line showed attenuated weight loss and gene dosage-dependent rescue of mortality compared with FPr+/+ cohorts. IER-SftpcI73T/FPr-/- mice also showed reductions in multiple fibrotic endpoints for which administration of nintedanib was not additive. Single-cell RNA-Seq, pseudotime analysis, and in vitro assays demonstrated Ptgfr expression predominantly within adventitial fibroblasts, which were reprogrammed to an "inflammatory/transitional" cell state in a PGF2α /FPr-dependent manner. Collectively, the findings provide evidence for a role for PGF2α signaling in IPF, mechanistically identify a susceptible fibroblast subpopulation, and establish a benchmark effect size for disruption of this pathway in mitigating fibrotic lung remodeling.


Assuntos
Dinoprosta , Fibrose Pulmonar Idiopática , Camundongos , Animais , Dinoprosta/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose , Dinâmica Populacional
10.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37824206

RESUMO

Metabolic syndrome, today affecting more than 20% of the US population, is a group of 5 conditions that often coexist and that strongly predispose to cardiovascular disease. How these conditions are linked mechanistically remains unclear, especially two of these: obesity and elevated blood pressure. Here, we show that high fat consumption in mice leads to the accumulation of lipid droplets in endothelial cells throughout the organism and that lipid droplet accumulation in endothelium suppresses endothelial nitric oxide synthase (eNOS), reduces NO production, elevates blood pressure, and accelerates atherosclerosis. Mechanistically, the accumulation of lipid droplets destabilizes eNOS mRNA and activates an endothelial inflammatory signaling cascade that suppresses eNOS and NO production. Pharmacological prevention of lipid droplet formation reverses the suppression of NO production in cell culture and in vivo and blunts blood pressure elevation in response to a high-fat diet. These results highlight lipid droplets as a critical and unappreciated component of endothelial cell biology, explain how lipids increase blood pressure acutely, and provide a mechanistic account for the epidemiological link between obesity and elevated blood pressure.


Assuntos
Hipertensão , Gotículas Lipídicas , Óxido Nítrico Sintase Tipo III , Animais , Camundongos , Pressão Sanguínea , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Gotículas Lipídicas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos
11.
Nat Commun ; 14(1): 5172, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620332

RESUMO

Many chronic disease symptomatologies involve desynchronized sleep-wake cycles, indicative of disrupted biorhythms. This can be interrogated using body temperature rhythms, which have circadian as well as sleep-wake behavior/environmental evoked components. Here, we investigated the association of wrist temperature amplitudes with a future onset of disease in the UK Biobank one year after actigraphy. Among 425 disease conditions (range n = 200-6728) compared to controls (range n = 62,107-91,134), a total of 73 (17%) disease phenotypes were significantly associated with decreased amplitudes of wrist temperature (Benjamini-Hochberg FDR q < 0.05) and 26 (6.1%) PheCODEs passed a more stringent significance level (Bonferroni-correction α < 0.05). A two-standard deviation (1.8° Celsius) lower wrist temperature amplitude corresponded to hazard ratios of 1.91 (1.58-2.31 95% CI) for NAFLD, 1.69 (1.53-1.88) for type 2 diabetes, 1.25 (1.14-1.37) for renal failure, 1.23 (1.17-1.3) for hypertension, and 1.22 (1.11-1.33) for pneumonia (phenome-wide atlas available at http://bioinf.itmat.upenn.edu/biorhythm_atlas/ ). This work suggests peripheral thermoregulation as a digital biomarker.


Assuntos
Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Temperatura , Punho , Ritmo Circadiano , Reino Unido/epidemiologia
12.
bioRxiv ; 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37398323

RESUMO

Lipids may influence cellular penetrance by pathogens and the immune response that they evoke. Here we find a broad based lipidomic storm driven predominantly by secretory (s) phospholipase A 2 (sPLA 2 ) dependent eicosanoid production occurs in patients with sepsis of viral and bacterial origin and relates to disease severity in COVID-19. Elevations in the cyclooxygenase (COX) products of arachidonic acid (AA), PGD 2 and PGI 2 , and the AA lipoxygenase (LOX) product, 12-HETE, and a reduction in the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients, correlate with the inflammatory response and link to disease severity. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflect disease severity in COVID-19. AA and LA metabolites and LPC-O-16:0 linked variably to the immune response. These studies yield prognostic biomarkers and therapeutic targets for patients with sepsis, including COVID-19. An interactive purpose built interactive network analysis tool was developed, allowing the community to interrogate connections across these multiomic data and generate novel hypotheses.

13.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37463053

RESUMO

Optimal lung repair and regeneration are essential for recovery from viral infections, including influenza A virus (IAV). We have previously demonstrated that acute inflammation and mortality induced by IAV is under circadian control. However, it is not known whether the influence of the circadian clock persists beyond the acute outcomes. Here, we utilize the UK Biobank to demonstrate an association between poor circadian rhythms and morbidity from lower respiratory tract infections, including the need for hospitalization and mortality after discharge; this persists even after adjusting for common confounding factors. Furthermore, we use a combination of lung organoid assays, single-cell RNA sequencing, and IAV infection in different models of clock disruption to investigate the role of the circadian clock in lung repair and regeneration. We show that lung organoids have a functional circadian clock and the disruption of this clock impairs regenerative capacity. Finally, we find that the circadian clock acts through distinct pathways in mediating lung regeneration - in tracheal cells via the Wnt/ß-catenin pathway and through IL-1ß in alveolar epithelial cells. We speculate that adding a circadian dimension to the critical process of lung repair and regeneration will lead to novel therapies and improve outcomes.


Assuntos
Relógios Circadianos , Vírus da Influenza A , Pulmão/metabolismo , Células Epiteliais Alveolares , Ritmo Circadiano , Relógios Circadianos/genética , Vírus da Influenza A/fisiologia , Regeneração
14.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333249

RESUMO

Idiopathic Pulmonary Fibrosis (IPF) is a chronic parenchymal lung disease characterized by repetitive alveolar cell injury, myofibroblast proliferation, and excessive extracellular matrix deposition for which unmet need persists for effective therapeutics. The bioactive eicosanoid, prostaglandin F2α, and its cognate receptor FPr (Ptfgr) are implicated as a TGFß1 independent signaling hub for IPF. To assess this, we leveraged our published murine PF model (IER - SftpcI73T) expressing a disease-associated missense mutation in the surfactant protein C (Sftpc) gene. Tamoxifen treated IER-SftpcI73T mice develop an early multiphasic alveolitis and transition to spontaneous fibrotic remodeling by 28 days. IER-SftpcI73T mice crossed to a Ptgfr null (FPr-/-) line showed attenuated weight loss and gene dosage dependent rescue of mortality compared to FPr+/+ cohorts. IER-SftpcI73T/FPr-/- mice also showed reductions in multiple fibrotic endpoints for which administration of nintedanib was not additive. Single cell RNA sequencing, pseudotime analysis, and in vitro assays demonstrated Ptgfr expression predominantly within adventitial fibroblasts which were reprogrammed to an "inflammatory/transitional" cell state in a PGF2α/FPr dependent manner. Collectively, the findings provide evidence for a role for PGF2α signaling in IPF, mechanistically identify a susceptible fibroblast subpopulation, and establish a benchmark effect size for disruption of this pathway in mitigating fibrotic lung remodeling.

15.
Adv Sci (Weinh) ; 10(24): e2301505, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37330661

RESUMO

The circadian clock in animals and humans plays crucial roles in multiple physiological processes. Disruption of circadian homeostasis causes detrimental effects. Here, it is demonstrated that the disruption of the circadian rhythm by genetic deletion of mouse brain and muscle ARNT-like 1 (Bmal1) gene, coding for the key clock transcription factor, augments an exacerbated fibrotic phenotype in various tumors. Accretion of cancer-associated fibroblasts (CAFs), especially the alpha smooth muscle actin positive myoCAFs, accelerates tumor growth rates and metastatic potentials. Mechanistically, deletion of Bmal1 abrogates expression of its transcriptionally targeted plasminogen activator inhibitor-1 (PAI-1). Consequently, decreased levels of PAI-1 in the tumor microenvironment instigate plasmin activation through upregulation of tissue plasminogen activator and urokinase plasminogen activator. The activated plasmin converts latent TGF-ß into its activated form, which potently induces tumor fibrosis and the transition of CAFs into myoCAFs, the latter promoting cancer metastasis. Pharmacological inhibition of the TGF-ß signaling largely ablates the metastatic potentials of colorectal cancer, pancreatic ductal adenocarcinoma, and hepatocellular carcinoma. Together, these data provide novel mechanistic insights into disruption of the circadian clock in tumor growth and metastasis. It is reasonably speculated that normalization of the circadian rhythm in patients provides a novel paradigm for cancer therapy.


Assuntos
Neoplasias Hepáticas , Fator de Crescimento Transformador beta , Camundongos , Humanos , Animais , Fator de Crescimento Transformador beta/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Fibrinolisina/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Músculos , Encéfalo/metabolismo , Microambiente Tumoral
16.
medRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205602

RESUMO

Background: Chronic kidney disease (CKD) represents a significant global burden. Hypertension is a modifiable risk factor for rapid progression of CKD. Methods: We extend the risk stratification by introducing the non-parametric determination of rhythmic components in 24-hour profiles of ambulatory blood pressure monitoring (ABPM) in the African American Study for Kidney Disease and Hypertension (AASK) cohort and the Chronic Renal Insufficiency Cohort (CRIC) using Cox proportional hazards models. Results: We find that rhythmic profiling of BP through JTK_Cycle analysis identifies subgroups of CRIC participants at advanced risk of cardiovascular death. CRIC participants with a history of cardiovascular disease (CVD) and absent cyclic components in their BP profile had at any time a 3.4-times higher risk of cardiovascular death than CVD patients with cyclic components present in their BP profile (HR: 3.38, 95% CI: 1.45-7.88, p=0.005). This substantially increased risk was independent of whether ABPM followed a dipping or non-dipping pattern whereby non-dipping or reverse dipping were not significantly associated with cardiovascular death in patients with prior CVD (p>0.1). In the AASK cohort, unadjusted models demonstrate a higher risk in reaching end stage renal disease among participants without rhythmic ABPM components (HR:1.80, 95% CI: 1.10-2.96); however, full adjustment abolished this association. Conclusions: This study proposes rhythmic blood pressure components as a novel biomarker to unmask excess risk among CKD patients with prior cardiovascular disease.

17.
Sci Transl Med ; 15(696): eabo2022, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37196066

RESUMO

Longitudinal studies associate shiftwork with cardiometabolic disorders but do not establish causation or elucidate mechanisms of disease. We developed a mouse model based on shiftwork schedules to study circadian misalignment in both sexes. Behavioral and transcriptional rhythmicity were preserved in female mice despite exposure to misalignment. Females were protected from the cardiometabolic impact of circadian misalignment on a high-fat diet seen in males. The liver transcriptome and proteome revealed discordant pathway perturbations between the sexes. Tissue-level changes were accompanied by gut microbiome dysbiosis only in male mice, biasing toward increased potential for diabetogenic branched chain amino acid production. Antibiotic ablation of the gut microbiota diminished the impact of misalignment. In the United Kingdom Biobank, females showed stronger circadian rhythmicity in activity and a lower incidence of metabolic syndrome than males among job-matched shiftworkers. Thus, we show that female mice are more resilient than males to chronic circadian misalignment and that these differences are conserved in humans.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Masculino , Feminino , Animais , Camundongos , Dieta Hiperlipídica , Caracteres Sexuais , Ritmo Circadiano
18.
J Pharmacol Exp Ther ; 386(2): 198-204, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37105582

RESUMO

Evidence is scarce to guide the use of nonsteroidal anti-inflammatory drugs (NSAIDs) to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-related adverse effects, given the possibility of blunting the desired immune response. In this pilot study, we deeply phenotyped a small number of volunteers who did or did not take NSAIDs concomitant with SARS-CoV-2 immunizations to seek initial information on the immune response. A SARS-CoV-2 vaccine-specific receptor binding domain (RBD) IgG antibody response and efficacy in the evoked neutralization titers were evident irrespective of concomitant NSAID consumption. Given the sample size, only a large and consistent signal of immunomodulation would have been detectable, and this was not apparent. However, the information gathered may inform the design of a definitive clinical trial. Here we report a series of divergent omics signals that invites additional hypotheses testing. SIGNIFICANCE STATEMENT: The impact of nonsteroidal anti-inflammatory drugs (NSAIDs) on the immune response elicited by repeat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunizations was profiled by immunophenotypic, proteomic, and metabolomic approaches in a clinical pilot study of small sample size. A SARS-CoV-2 vaccine-specific immune response was evident irrespective of concomitant NSAID consumption. The information gathered may inform the design of a definitive clinical trial.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Projetos Piloto , Proteômica , Anticorpos Antivirais , Imunoglobulina G , Vacinação , Imunidade , Anti-Inflamatórios
20.
FASEB J ; 37(2): e22753, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624683

RESUMO

Fibroblasts are stromal cells abundant throughout tissues, including the lungs. Fibroblasts are integral coordinators of immune cell recruitment through chemokine secretion. Circadian rhythms direct the recruitment of immune cells to the lung, which in turn impacts response to infection and survival. Although fibroblasts display robust circadian rhythms, the contribution of the fibroblast molecular clock to lung-specific migration of immune cells and recruitment remains to be established. Mice challenged intranasally with lipopolysaccharide (LPS) at dusk showed increased expression of the pro-inflammatory cytokine IL-1ß and chemokine CXCL5 in the lung, which was accompanied by increased neutrophil recruitment. Primary lung fibroblasts with knockdown of the core clock gene Bmal1 and immortalized Bmal1-/- lung fibroblasts also displayed increased Cxcl5 expression under IL-1ß stimulation. Conditioned media obtained from IL-1ß-stimulated Bmal1-/- immortalized fibroblasts-induced greater neutrophil migration compared with Bmal1+/+ lung fibroblast controls. Phosphorylation of the NF-κB subunit, p65, was enhanced in IL-1ß-stimulated Bmal1-/- lung fibroblasts, and pharmacological inhibition of NF-κB attenuated the enhanced CXCL5 production and neutrophil recruitment observed in these cells. Collectively, these results demonstrate that Bmal1 represses NF-κB activity in lung fibroblasts to control chemokine expression and immune cell recruitment during an inflammatory response.


Assuntos
Fatores de Transcrição ARNTL , NF-kappa B , Animais , Camundongos , Infiltração de Neutrófilos , Fatores de Transcrição ARNTL/genética , Fibroblastos , Movimento Celular , Ritmo Circadiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...